If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=2G^2+5G-10
We move all terms to the left:
(G)-(2G^2+5G-10)=0
We get rid of parentheses
-2G^2+G-5G+10=0
We add all the numbers together, and all the variables
-2G^2-4G+10=0
a = -2; b = -4; c = +10;
Δ = b2-4ac
Δ = -42-4·(-2)·10
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*-2}=\frac{4-4\sqrt{6}}{-4} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*-2}=\frac{4+4\sqrt{6}}{-4} $
| 132=x+59 | | -5(x-6)=-6x+27 | | -4m+7m=-9 | | -13b=-130 | | 10x-4=5x-19 | | (4/5x)-4=6 | | -5x-22=23 | | x+|1+2x|=-2 | | 0.60x-10=8x-54.4 | | 8x+3(2x+6)=-88 | | 4+4b-5b=9 | | 6x-9+5x=13 | | 9^3n=81 | | 35n=55n | | 6z=-z | | (k-1)/5=10 | | 4(v+3)=2v-8 | | -5r-7r=12 | | -8(a-4)+3a=2(4a-9)+1 | | 2x+20+4x+10=90 | | t+55-55=466-55 | | 6-9p=-7p-2 | | -3•4y=(4+5y)-72 | | 6=y/15 | | 2(x+5)=102 | | x+59=132 | | 2z+3+4z=-2+z | | 5y+7.2=27.7 | | 4(5n-7)=22(5n+1) | | (X-52)=x | | t+55+55=466-55 | | -5g-2=-17 |